Candida glabrata: un patógeno emergente
PDF

Palabras clave

Candida
Candida glabrata
Virulencia
Resistencia
Antifúngicos.

Cómo citar

1.
Muñoz del Valle GM. Candida glabrata: un patógeno emergente. Biociencias [Internet]. 1mar.2015 [citado 24ene.2020];10(1):89 -102. Available from: http://ojsinvestigacion.unilibrebaq.edu.co/ojsinvestigacion/index.php/biociencias/article/view/105

Resumen

Las levaduras del género Candida forman parte de la microbiota de piel, mucosa oral, gastrointestinal y vaginal del humano. Han sido catalogadas como responsables del incremento de las infecciones fúngicas oportunistas, ocasionadas por especies conocidas y emergentes, de las cuales se destaca Candida glabrata, relacionada como la segunda especie del género involucrado en la candidemia. Estas cifras se encuentran condicionadas a factores tanto de la levadura: virulencia, expresión de múltiples mecanismos de resistencia antifúngica como del hospedero: hospitalización, enfermedad de base, tipo de infección y tratamiento aplicado, o en aquellos que presentan alguna forma de inmunosupresión, entre otros, por lo que se constituyen en un problema de salud mundial con importantes índices de morbilidad y mortalidad. La búsqueda de artículos en la literatura se realizó por medio de PubMed. Se hicieron indagaciones separadas, en las que se utilizaron las palabras clave Candida sp, Candida glabrata, factores de virulencia y resistencia antifúngica. Se revisaron artículos de los últimos 10 años, publicados en español e inglés y aquellos relevantes que se encontraron en estas bibliografías.

PDF

Citas

1. Chaffin WL, Lopez-Ribot J, Casanova M, Gozalbo D, Martinez J. P. Cell wall and secreted proteins of Candida albicans: identification,
function and expression. Microbiol Mol Biol Rev. 1998; 62:130-80.

2. Khadia M, Janez Kokosa J, Xiaoxian G, Zhenglong G, Olena P. Ishchuk and Jure Piskur. Genome structure and dynamics of the
yeast pathogen Candida glabrata. FEMS Yeast Res. 2014; 14:529-35.

3. Muller H, Hennequin Ch, Gallaud J, Dujon B and Fairhead C. The Asexual Yeast Candida glabrata Maintains Distinct a and α Haploid
Mating Types. Eukaryotic Cell. 2008; 7(5): 848-58.

4. Srikantha T, Daniels KJ, Wu W, Shawn R. Dark brown is the more virulent of the switch phenotypes of Candida glabrata. Microbiology. 2008; 154: 3309-18.

5. Wilson A, Delport J, and Ponich T. Research Article Candida glabrata Esophagitis: Are We Seeing the Emergence of a New AzoleResistant
Pathogen? International Journal of Microbiology; 2014, Article ID 371631.

6. Berman J. Morphogenesis and cell cycle progression
in Candida albicans. Curr Opin Microbiol. 2006; 9:595-601.
7. Chaffin W. Candida albicans cell wall proteins Microbiol Mol Biol Rev. 2008; 72:495-544.

8. Borst A. Raimer M. Warnock D. Morrison C. Arthington-Skaggs B. Rapid Acquisition of Stable Azole Resistance by Candida glabrata
Isolates Obtained before the Clinical Introduction of Fluconazole. Antimicrobial agents and chemotherapy. 2005; 49(2):783-7.

9. Lesage G, Busse H. Cell Wall Assembly in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews. 2006; 70(2):317-43.

10. Okada H. Abe M, Asakawa-Minemura M, Aiko Hi. Multiple Functional Domains of the Yeast l,3-b-Glucan Synthase Subunit Fks1p Revealed by Quantitative Phenotypic Analysis of Temperature-Sensitive Mutants. Genetics. 2010; 184(4):1013-24.

11. Rauceo J, De Armond R, Otoo H, Kahn, S. Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin
Als5p. Eukaryot. Cell. 2006; 5:1664-73.

12. Ruiz-Herrera J, Elorza MV, Valentin E, Sentandreu R. Molecular Organization of the cell wall of Candida albicans and its relation
to pathogenicity. FEMS Yeast Res. 2006; 6(1):14-29.

13. Kumanoto C, Vinves M. Alternative Candida albicans life styles: growth on surfaces. Annu. Rev. Microbiology. 2005; 59:113-33.

14. Pontón J. La pared celular de los hongos y el mecanismo de acción de la anidulafungina. Rev Iberoam Micol. 2008; 25:78-82.

15. Linares C, Loreto E, Silveira CP, Pozzo P, Alves L, Santurio J, et al. Enzymatic and hemolytic activities of Candida dubliniensis strains.
Rev. Inst. Med. trop. Med. S. Paulo. 2007; 49(4):203-6.

16. Ombrella A, Racca L, Ramos L. Actividades Proteinasas y fosfolipasas de aislamientos de Candida albicans provenientes de secreciones vaginales con distintos valores de pH. Rev Iberoam Micol. 2008; 25:12-6.

17. Spanova M, Czabany T, Zellnig G, Leitner E, Hapala I, Daum G. Effect of Lipid Particle Biogenesis on the Subcellular Distribution of
Squalene in the Yeast Saccharomyces cerevisiae. J. Biol. Chem. 2010; 85(6):127-133.

18. Wang H, Kong F, Sorrell T, et al. Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility
to fluconazole by rolling circle amplification and DNA sequencing. BMC Microbiology.2009;9:167-78. http://www.biomedcentral.com/1471-2180/9/167

19. Fonseca E, Silva S, Fortuna Rodrigues C, Tiago Alves C, Azeredo J, and Henriques M. Effects of fluconazole on Candida glabrata
biofilms and its relationship with ABC transporter gene expression. Biofouling: The Journal of Bioadhesion and Biofilm Research.
2014;30(4):447-57.

20. Gupta A, Gupta A, and Varma A. Candida
glabrata candidemia: An emerging threat in
critically ill patients. Indian J Crit Care Med.
2015; 19(3):151-4.

21. Pfaller MA, and Diekema D. Epidemiology of Invasive Candidiasis: a Persistent Public Health Problem. Clin Microbiol Rev. 2007; 20(1):133-63. doi:10.1128/CMR.00029-06

22. Liu W, Tan J, Sun J, Xu Z, Li M, Yang Q et al. Invasive candidiasis in intensive care units in China: in vitro antifungal susceptibility in the
China-SCAN study. J Antimicrob Chemother 2014; 69: 162-7.

23. Pfaller MA. Activity of echinocandins and triazoles against a contemporary (2012) worldwide collection of yeast and moulds
collected from invasive infections. Journal of Antimicrobial agents. 2012; 44(4):320-6.

24. Tscherner M, Schwarzmüller T, and Kuchle K. Pathogenesis and Antifungal Drug Resistance of the Human Fungal Pathogen Candida
glabrata. Pharmaceuticals (Basel). 2011; 4(1):169-86.

25. Bairwa G, Rasheed M, Taigwal R, Sahoo R and Kaur R. GPI (glycosyl phosphatidyl inositol)- linked aspartyl proteases regulate vacuole homoeostasis in Candida glabrata Biochem. J. 2014; 458:323-34.

26. Fleck R, Dietz A, Hof H. In vitro susceptibility of Candida species to five antifungal agents in a German university hospital assessed by the reference brothmicrodilution method and Etest. J Antimicrob Chemother. 2007; 59:767-71. doi: 10.1093/jac/dkl555

27. Pfaller MA, Diekema D, Gibbs D, Newell V, Ellis D, Tullio V, et al. Analysis of susceptibilities of Candida species to fluconazole and
voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol. 2010; 48:1366-77.

28. Pfaller MA, Messer S, Boyken L, Tendolkar S, Hollis R, Diekema D. Geographic variation in the susceptibilities of invasive isolates of
Candida glabrata to seven systemically active antifungal agents: a global assessment from the ARTEMIS Antifungal Surveillance Program conducted in 2001 and 2002. J. Clin. Microbiol. 2004; 42:3142-6.

29. Pfaller MA, Diekema D. Twelve years of fluconazole
in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. Clin. Microbiol. Infect. 2004; 10:11-23.

30. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Tullio V et al. Results from the Artemis Disk Global Antifungal Surveillance Study, 1997 to 2005: a 8.5-Year Analysis of Susceptibilities of Candida Species and Other Yeast Species to Fluconazole and Voriconazole Determined by CLSI Standardized Disk Diffusion Testing. 2004 Journal of Clinical Microbiology. 2007; 45(6):1735-45.

31. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Tullio V et al. Results from the Artemis Disk Global Antifungal Surveillance
Study, 1997 to 2007: a 10.5-Year Analysis of Susceptibilities of Candida Species to Fluconazole and Voriconazole as Determined by
CLSI Standardized Disk Diffusion. Clin Microbiol. 2010; 48(4):1366-77.

32. RodloffAC, Koch D and Schaumann R. Epidemiology and antifungal resistance in invasive candidiasis. European Journal of Medical Research. 2011; 16:187-95.

33. Orasch C, Marchetti O, Garbino J, et al. Candida
species distribution and antifungal susceptibility testing according to European Committee on Antimicrobial Susceptibility Testing and new vs. old Clinical and Laboratory Standards Institute clinical breakpoints: a 6-year prospective candidaemia survey from the fungal infection network of Switzerland. Clin Microbiol Infect. 2014; 20(7):698-705.

34. Antony G, Saralaya V, Gopalkrishna Bhat K, Shalini Shenoy M, Shivananda PG. Effect of phenotypics witching on expression of virulence
factors by Candida albicans causing candidiasis indiabetic patients. Rev Iberoam Micol. 2009; 26(3):202-5.

35. Calderon J, Zavrel M, Ragni E, Fonzi W, Rupp S, Popolo l. PHR1, a pH-regulated gene of Candida albicans encoding a glucan-remodelling
enzyme, is required for adhesion and invasion. Microbiology. 2010; 156(8):2484- 94.

36. Catalán-González M, Montejo-González J. Farmacodinamia y farmacocinética de la micofungina en adultos, niños y neonatos. Rev
Iberoam Micol. 2009; 26(1):23-34.

37. Georgy A, Vishwas S, Gopalkrishna Bhat K, Shalini Sheno M, Shivananda P. Effect of phenotypic switching on expression of virulence
factors by Candida albicans causing candidiasis indiabetic patients. Rev Iberoam Micol. 2009; 26(3):202-5.

38. Li F, Svarovsky M, Karlsson A, Gross M, Sulkes J, Baniel J, et al. Eap1p, an Adhesin that Mediates Candida albicans Biofilm Formation In Vitro and In Vivo. Eukaryotic cell. 2007; 6(6):931-9.

39. Oliver B, Song J, Choiniere J, White T. cisActing
Elements within the Candida albicans
ERG11 Promoter Mediate the Azole Response
through Transcription Factor Upc2p. Eukaryotic
cell. 2007; 6(12):2231-9.

40. Paniagua-Contreras G, Monroy E, Pineda J, Negrete E, Vaca S. Caracterización genotípica de Candida albicans aisladas en mucosa
oral y vaginal de pacientes no inmunocomprometidos Rev Med Hosp Gen Mex. 2010; 73(2):94-101.

41. Thierry A, Bouchier C, Dujon B, Richard GF. Megasatellites: a peculiar class of giant minisatellites in genes involved in cell adhesion
and pathogenicity in Candida glabrata. Nucleic. Acids Res. 2008; 36(18):5970-82.

42. Vylkova S, Carman A, Danhof H, Collette J, Zhou H, and Lorenz M. The Fungal Pathogen Candida albicans Autoinduces Hyphal Morphogenesis by Raising Extracellular pH. mBio. 2011; 2(3):e00055-11. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3101780/

43. Zheng XD, Lee RT, Wang YM, Lin Q, Wang Y. Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth. Embo J. 2007; 26(16):3760-9.

44. Carr J, Ferreira J, Starling CE, De Resende MA, Donlan RM. Biofilm formation and effect of caspofungin on biofilm structure of Candida
species bloodstream isolates. Antim Agent Chemot. 2009; 53(10):4377-84.

45. Bairwa G and Kaur, R. Anovel role for a glycosyl phosphatidyl inositol-anchored aspartyl protease, CgYps1, in the regulation of pH
homeostasis in Candida glabrata. Mol. Microbiol. 2011; 79:900-13.

46. Castanheira M, Messer SA, De Groot PW, Kraneveld EA, Yin QY, et al. The cell wall of the human pathogen Candida glabrata: differential
incorporation of novel adhesin-like wall proteins. Eukaryot. Cell. 2008; 7(11): 1951-64.

47. Castanheira M, Messer SA, De Groot PW, Kraneveld EA, Yin QY, et al. The cell wall of the human pathogen Candida glabrata: differential
incorporation of novel adhesin-like wall proteins. Eukaryot. Cell. 2008; 7(11): 1951-64.

48. Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP. Glycan microarray analysis of Candida glabrata adhesin
ligand specificity. Mol. Microbiol. 2008; 68:54.

49. De la Calle Rodríguez N, Santa Vélez C, Cardona-Castro N. Factores de virulencia para la infección de tejidos queratinizados por
Candida albicans y hongos dermatofitos. CES Med. 2012; 26(1):43-55.

50. Nakayama H, Tanabe K, Bard M. The Candida glabrata putative sterol transporter gene CgAUS1 protects cells against azoles in the
presence of serum. J. Antim. Chem. 2007; 60(6):1264-72.

51. Lermann U, Morschha J. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans.
Microbiology. 2008; 154(11):3281-95. http://mic.sgmjournals.org/content/154/11/3281.long

52. Martinez-Jimenez V, Ramirez-Zavaleta CY, Orta-Zavalza E, et al. Sir3 Polymorphisms in Candida glabrata clinical isolates. Mycopathologia.
2013; 175(3-4):207-19. http://link.springer.com/article/10.1007%2Fs11046-013-9627-2

53. Roetzer A, Gratz N, Kovarik P, Schüller C. Autophagy
supports Candida glabrata survival during phagocytosis. Cell. Microbiol. 2010; 12:199-216.

54. Anderson JB, Sirjusingh C, Syed N, and Lafayette S. Gene Expression and Evolution of Antifungal Drug Resistance. Antimicrob.
Agents Chemother. 2009; 53(5):1931-6.

55. Anderson JB. Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nature Reviews Microbiology. 2005; 3:547-56

56. Hill JA, Ammar R, Torti D, Nislow C, Cowen LE. Genetic and Genomic Architecture of the Evolution of Resistance to Antifungal Drug Combinations. PLoS Genet. 2013; 9(4): e1003390. doi: 10.1371/journal.pgen.1003390

57. Huang M, Kao KC. Population dynamics and the evolution of antifungal drug resistance in Candida albicans. FEMS Microbiol Let. 2012; 333(2):85-93.

58. Huang M, McClellan M, Berman J, Kao KC. Evolutionary dynamics of Candida albicans during in vitro evolution. Eukaryot Cell. 2011;
10(11):1413-21.

59. Schwarzmüller T, Ma B, Hiller E, Istel F, Tscherner M, Brunke S. Systematic Phenotyping of a Large-Scale Candida glabrata Deletion
Collection Reveals Novel Antifungal Tolerance Genes. PLoS Pathog. 2014; 10(6): e1004211.

60. Costa-de-Oliveira S, Miranda I, Silva R, Pinto e Silva A, Rocha R. FKS2 Mutations Associated with Decreased Echinocandin Susceptibility
of Candida glabrata following Anidulafungin Therapy. Antimicrob. Agents Chemother. 2011; 55:1312-4.

61. Pfaller MA, Messer SA, Moet GJ, Jones RN, Castanheira M. Candida bloodstream infections: comparison of species distribution and
resistance to echinocandin and azole antifungal agents in Intensive Care Unit (ICU) and non-ICU settings in the SENTRY Antimicrobial
Surveillance Program (2008-2009). Int. J. Antimicrob Agent. 2011; 38(1):65-9.

62. Guinea J. Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect. 2014; 20(6):5-10.
Derechos de autor 2015 BIOCIENCIAS