Compuestos con potencial actividad farmacológica obtenidos a partir de conotoxinas de animales marinos (moluscos gasterópodos Conus magus)
PDF

Palabras clave

Analgésicos
Dolor
Venenos
Conotoxinas
Conopéptidos
Moluscos gasterópodos
Caracoles.

Cómo citar

1.
Rincón Silva N, Rincón Silva J, Castellanos Bernal C. Compuestos con potencial actividad farmacológica obtenidos a partir de conotoxinas de animales marinos (moluscos gasterópodos Conus magus). Biociencias [Internet]. 28ago.2015 [citado 18ene.2020];10(2):51 -63. Available from: http://ojsinvestigacion.unilibrebaq.edu.co/ojsinvestigacion/index.php/biociencias/article/view/454

Resumen

El dolor es una experiencia sensorial y emocional desagradable, que pueden experimentar todos aquellos seres vivos que disponen de un sistema nervioso central -SNC, es una experiencia asociada a una lesión tisular o expresada como si esta existiera. En esta revisión, se presentan nuevas fuentes naturales para la obtención de diversos fármacos para tratar el dolor crónico de diversas patologías aislados desde animales marinos (caracoles del género Conus), se trata de conotoxinas aisladas de venenos de estos animales. Su efecto terapéutico consiste en un bloqueo selectivo de los canales de calcio (Ca) tipo N, por medio del cual reduce la liberación de neurotransmisores pronociceptivos en el asta posterior de la médula espinal, inhibiendo, de esta manera, la transmisión del impulso doloroso. Asimismo se plantean diversas metodologías para la obtención de estos novedosos compuestos, así como una caracterización completa de los animales de donde se extraen y otras aplicaciones médicas de estos compuestos.

PDF

Citas

1. Grimmer-Somers K, Vipond N, Kumar S, Hall G. A review and critique of assessment instruments for patients with persistent pain. Journal of Pain Research. 2009; 2:21-47.

2. Girard JR, Aldrete J. Consideraciones sobre la palabra algología. Revista Dolor, Clínica y Terapia 2008; 8.

3. Frey-Law LA, Lee JE, Wittry AM, Melyon M. Pain rating schema: three distinct subgroups of individuals emerge when rating mild, moderate,
and severe pain. Journal of Pain Research. 2014; 7:13-23.

4. Eustice C. fibromyalgia vs. rheumatoid arthritis pain-what factors determine treatment? Some patients have both conditions. Arthritis
& Joint Conditions Expert; 2014.

5. Katz N, Paillard FC, Van Inwegen R. A Review of the Use of the Number Needed to Treat to Evaluate the Efficacy of Analgesics. The Journal of Pain 2015; 16(2):116-23.

6. Sammour RN, Ohel G, Cohen GM, Gonen R. Oral naproxen versus oral tramadol for analgesia after cesarean delivery. International Journal of Gynecology and Obstetrics. 2011; 113:144-7.

7. Malm H. Borisch C. Analgesics, non-steroidal anti-inflammatory drugs (NSAIDs), muscle relaxants, and antigout medications. Drugs
During Pregnancy and Lactation (Third Edition). 2015; 27-58.

8. Piazueloa E, Lanas A. NSAIDS and gastrointestinal cancer. Prostaglandins & other Lipid Mediators. Article in press; 2015.

9. Ficha Técnica del Naproxeno. [Citado 15 may 2015]. Disponible: https://botplusweb.portalfarma.com/Documentos/FICHAS%20TECNICAS%20POR%20LABORATORIOS%20PDF/Dexter%20Farmaceutica/f6341%20FT%20Naproxeno%20Dexter%20500%20sobres.PDF

10. Ficha Técnica de Paracetamol. [Citado 15 may 2015]. Disponible: http://www.aemps.gob.es/cima/pdfs/es/ft/57652/P_57652.pdf

11. Lu Y, Hu J, Dong C. Morphine may enhance the cardioprotection induced by remote ischemic preconditioning. International Journal
of Cardiology. 2015; 187(6):443-4.

12. Prashanth JR, Lewis RJ, Dutertre S. Towards an integrated venomics approach for accelerated conopeptide discovery. Toxicon. 2012;
60:470-7.

13. Hu Y, Chen J, Hu G, Yu J, Zh X, Lin Y. Statistical research on the bioactivity of new marine natural products discovered during the
28 years from 1985 to 2012. Marine drugs. 2015; 13:202-21.

14. Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta. 2013; 1830:
3670-95.

15. Costantini M. An overview on genome organization
of marine organisms. Marine Genomics. Article in press; 2015.

16. Padilla DK, Savedo MM, Chapter Two – a systematic review of phenotypic plasticity in marine invertebrate and plant systems. Advances
in Marine Biology. 2013; 65:67-94.

17. Dutertre S, Lewis RJ, Cone Snail Biology, Bioprospecting
and Conservation, Snails: Biology, Ecology and Conservation. Nova Science. New York: Publishers; 2012.

18. Brusca RC, Brusca JR. Invertebrates. 2da ed. Sinauer Associates, Inc., E.U.A; 2002.

19. Zamorano P, Michel E. Moluscos de aguas profundas del sur del golfo de California. Rev. Mex. Biodiv. 2007; 78(2):311-8.

20. Bermúdez JA. Animales invertebrados. Los
artrópodos. Disponible: https://proyectoeducere.wordpress.com/category/recursos-educativos/conocimiento-del-medio/los-seres-vivos/los-animales/animales-invertebrados/. 2015.

21. Gofas S, Moreno D, Salas C. Moluscos Marinos de Andalucía (Vol. I y II). Universidad de Málaga. Junta de Andalucía. (1ª ed); 2011.

22. Quiñonero-Salgado S, López Alabau A, García Meseguer AJ. Nuevas localidades de Helixlucorum (Linnaeus, 1758) para la península
Ibérica. Spira. 2010; 3(3-4):193-5.

23. Hannon H, Atchison W. Omega-conotoxins as experimental tools and therapeutics in pain management. Mar. Drugs. 2013; 11:680-99.

24. Favreau P, Stöcklin R. Marine snail venoms: use and trends in receptor and channel neuropharmacology. Current Opinion in Pharmacology. 2009; 9:594-601.

25. Hu H, Bandyopadhyay P, Olivera B, Yandell M. Characterization of the Conus bullatus genome and its venom-duct transcriptome. BMC
Genomics, 2011; 12(60).

26. Jakubowski JA, Kelley WP, Sweedler JV, Gilly WF, Schulz JR. Intraspecific variation of venom injected by fish-hunting Conus snails.
Journal of Experimental Biology. 2005; 208:2873-83.

27. Jones A, Bingham JP, Gehrmann J, Bond T, Loughnan M, Atkins A, et al. Isolation and characterization of conopeptides by high performance liquid chromatography combined with mass spectrometry and tandem
mass spectrometry. Rapid Communications in Mass Spectrometry. 1996; 10:138-43.

28. Kaas Q, Westermann JC, Halai R, Wang CKL, Craik DJ. ConoServer, a database for conopeptide sequences and structures. Bioinformatics.
2008; 24:445-6.

29. Lewis RJ, Dutertre S, Vetter I, McDonald CJ. Conus venom peptide pharmacology. Pharmacological Reviews. 2012; 64:259-98.

30. Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nature Reviews Drug Discovery. 2003; 2:790-802.

31. Hillyard DR, Monje VD, Mintz IM, Bean BP, Nadasdi L, Ramachandran J, et al. A new Conus peptide ligand for mammalian presynaptic
Ca2+ channels. Neuron. 1992; 9:69-77.

32. Martínez AP, Ardila HD. Del genoma a la era Post-Genómica. Química e industria. 2015; 27(1):06-13.

33. Davis J, Jones A, Lewis RJ. Remarkable inter-and intra-species complexity of conotoxins revealed by LC/MS. Peptides. 2009; 30:
1222-7.

34. Calvete J. Snake venomics: From the inventory of toxins to biology. Toxicon 2013; 75:44-62.

35. Rincón Silva NG, Carazzone C, Rincón Silva JD. Envenenamiento por mordeduras de serpientes: Impacto general en Colombia y en el mundo. Química e industria. 2015; 27(5): 32-7.

36. Biggs JS, Olivera BM, Kantor YI. α-Conopeptides specifically expressed in the salivary gland of Conus pulicarius. Toxicon.
2008; 52:101-05.

37. Terrat Y, Biass D, Dutertre SB, Favreau P, Remm M, Stöcklin R, et al. High-resolution picture of a venom gland transcriptome:
case study with the marine snail Conus consors. Toxicon. 2012; 59:34-46.

38. Alonso D, Khalil Z, Satkunanthan N, Livett BG. Drugs from the sea: conotoxins as drug leads for neuropathic pain and other neurological
conditions. Mini Rev. Med. Chem. 2003; 3:785-7.

39. Martínez Hernández L, López Vera E, Aguilar Ramírez MB. El veneno de los caracoles marinos y su paradójico uso médico. Revista Digital Universitaria UNAM. 2014; 15(11):100-12.

40. What is Neurodegenerative Disease? JPND Neurodegenerative Disease Research; 2015.
http://www.neurodegenerationresearch.eu/about/what/.

41. Bingham JP, Mitsunaga E, Bergeron Z. Drugs from slugs-past, present and future perspectives of ω-conotoxin research. Chem. Biol. Interact. 2010; 183:1-18.

42. Brand-Schieber E, Werner P. Calcium channel blockers ameliorate disease in a mouse model of multiple sclerosis. Exp. Neurologycal.
2004; 189:5-9.
Derechos de autor 2015 BIOCIENCIAS