Bases moleculares de las enfermedades autoinflamatorias
PDF

Palabras clave

Autoinflamación
Inflamosoma
Pyroptosis
Interleuquina 1β.

Cómo citar

1.
Torres Jiménez F. Bases moleculares de las enfermedades autoinflamatorias. Biociencias [Internet]. 18feb.2016 [citado 27may2019];8(2):85. Available from: http://ojsinvestigacion.unilibrebaq.edu.co/ojsinvestigacion/index.php/biociencias/article/view/70

Resumen

Las enfermedades autoinflamatorias son trastornos de la inmunidad innata, caracterizados por brotes periódi- cos de inflamación sistémica, episodios febriles recurrentes y de duración variable; que aparecen en ausencia de etiología infecciosa, neoplásica o autoinmunitaria. Genéticamente, son síndromes monogénicos, con patrón de herencia autosómico dominante o recesivo; causados por mutaciones en genes que codifican proteínas que regulan la respuesta inflamatoria. Estas patologías suelen iniciarse en la niñez, la mayoría con un inicio temprano; mientras que muy rara vez comienzan en la edad adulta.

A diferencia de las enfermedades autoinmunes, la inmunopatogénesis en la autoinflamación no ocurre a nivel de órganos linfoides, sino en los propios tejidos afectados. Si bien es cierto que en ambas patologías hay “autorreac- tividad”, en la autoinflamación esta es mediada por el sistema inmune innato, mientras que en la autoinmunidad está mediado por el sistema inmune adaptativo.

La fisiopatología molecular de las enfermedades autoinflamatorias subyace en algunos trastornos durante la acti- vación y señalización de algunas vías de la respuesta inmune innata, la cual genera una sobreproducción de cito- quinas proinflamatorias (IL-1β, IL-8, IL-18 e IL-33); que crean un sistema de retroalimentación auto-amplificante, que explica la cronicidad de estos síndromes.

Una de las vías que más ha sido asociada con la autoinflamación, son las mediadas por los receptores NLRPs, los cuales conforman un complejo multiproteíco de proteínas llamado Inflamosoma, sobre el cual se evidencian la mayoría de las bases genéticas y moleculares de la autoinflamación.

PDF

Citas

1. Kumar V, Abul K, Abbas A, Fausto N, Aster J. 2 Acute and chronic inflammation. 8th ed. Philadelphia: En Saunders (Elsevier). Robbins &
Cotran Pathologic Basis of Disease; 2009.

2. Goldsby R. Inmunología, 5ta ed. New York: Editorial McGraw-Hill; 2004.

3. Gell PGH, Coombs RRA. eds. Clinical Aspects of Immunology. 1st ed. Oxford, England: Blackwell; 1963.

4. Abbas AB, Lichtman AH. Ch. 2 Innate Immunity. Basic Immunology. Functions and disorders of the immune system. 3rd edición. Saunders (Elsevier); 2009.

5. Hawiger J. Innate immunity and inflammation: a transcriptional paradigm. Immunol. 2001; 23:99-109.

6. Federici S, Caorsi R, Gattorno M. The autoinflammatory diseases. Swiss Med Wkly. 2012; 19:142w13602.

7. Stojanov S, Kastner DL. Familial autoinflammatory diseases: genetics, pathogenesis and treatment. Curr Opin Rheumatol. 2005; 17:586-99.

8. Anaya JM, Gomez LM, Castiblanco J. Is there a Common Genetic Basis for Autoimmune Diseases? Clin Dev Immunol. 2006; 13:185-95.

9. Brydges S, Kastner DL. The systemic autoinflammatory diseases: inborn errors of the innate immune system. Curr Top Microbiol
Immunol. 2006; 305:127-60.

10. Doria A, Dayer JM, Punzi L. Autoinflammatory diseases: How to put the fire inside the body out? Autoimmun Rev. 2012; 12(1):1-4.


11. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes
familial cold autoinflammatory syndrome and Muckle-Wells syndrome. NatGenet. 2001; 29:3015.

12. Meiorina SM, Espadaa G, Rosèb C. Enfermedades autoinflamatorias en pediatría. Arch Argent Pediatr. 2013; 111(3):237-43.

13. McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW, Centola M, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999; 97:133-44.

14. Masters S, Simon A, Aksentijevich I, Kastner D. Horror Autoinflammaticus: The Molecular Pathophysiology of Autoinflammatory Disease. Annu Rev Immunol. 2009; 27:621-68.

15. Aróstegui JI. Enfermedades autoinflamatorias sistémicas hereditarias. Reumatol Clin. 2011; 7(1):45-50.

16. Peñaranda-Parada E, Spinel-Bejarano N, Restrepo JF, Rondón-Herrera F, Millán A, Iglesias GA. Enfermedades Autoinflamatorias. Rev. Colomb. Reumatol. 2010; 17:86-95.

17. Londoño JM, Niño CD, Hoyos NA, Jaimes FA. Uso de biomarcadores en el diagnóstico temprano y el tratamiento de la sepsis. IATREIA.
2013; 26(4):457-66.

18. Cañas CA. Autoinmunidad y autoinflamación. Acta Med Colomb. 2011; 36:78-84.

19. Mills KH, Dunne A. Immune modulation: IL-1, master mediator or initiator of inflammation. Nat Med. 2009; 15(12):1363-4.

20. Lachmann HJ, Quartier P, So A, Hawkins PN. The emerging role of interleukin-1 β in autoinflammatory diseases. Arthritis Rheum. 2011; 63(2):314-24.

21. Martinon F, Gaide O, Pétrilli V, Mayor A, Tschopp J. NALP inflammasomes: a central role in innate immunity. Semin Immunopathol. 2007; 29(3):213-29.

22. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006; 124:783-801.

23. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005; 17:1-14.

24. Fritz JH, Ferrero RL, Philpott DJ, Girardin SE. Nod-like proteins in immunity, inflammation and disease. NatImmunol. 2006; 7:1250-7.

25. Medzhitov R Jr, CA. Decoding the Patterns of Self and Nonself by the Innate Immune System. Science. 2002; 296:298-300.

26. Medzhitov R, Janeway CAJ. Innate immunity: The virtues of a nonclonal system of recognition. Cell. 1997; 91:295-8.

27. Matzinger P. Tolerance, danger, and the extended family. Annual Review of Immunology. 1994; 12:991-1045.

28. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010; 464:104-8.

29. Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol. 2009; 27:229-65.

30. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992; 356:768-74.

31. Martinon F, Tschopp J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 2007; 14(1):10-22.

32. Stutz A, Golenbock DT, Latz E. Inflammasomes: too big to miss. J Clin Invest. 2009; 119(12):3502-11.

33. Fernandes-Alnemri T, Yu J-W, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic
DNA. Nature. 2009; 26:509-13.

34. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009; 458(7237):514-8.

35. Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science (New York, N.Y.). 2009; 323(5917):1057-60.

36. Schroder K, Muruve DA, Tschopp J. Innate immunity: cytoplasmic DNA sensing by the AIM2 inflammasome. Current biology: CB.2009; 19(6):R262-5.

37. Jéru I, Duquesnoy P, Fernandes-Alnemri T, Cochet E, Yu JW, Lackmy-Port-Lis M, et al Mutations in NALP12 cause hereditary periodic
fever syndromes. Proceedings of the National Academy of Sciences of the United States of America. 2008 Feb 5; 105(5):1614- 9.

38. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011; 145(5):745-57.

39. Kempster SL, Belteki G, Forhead AJ, Fowden AL, Catalano RD, Lam BY, et al. Developmental control of the Nlrp6 inflammasome and a substrate, IL-18, in mammalian intestine. Am J PhysiolGastrointest Liver Physiol. 2011; 300(2):G253-63.

40. Bryant C, Fitzgerald KA. Molecular mechanisms involved in inflammasome activation. Trends Cell Biol. 2009; 19(9):455-64.

41. Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends in Microbiology. 2001; 9(3):113-4.

42. Fink S, Cookson B. Apoptosis, Pyroptosis, andNecrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells. Infection and Immunity. 2005; 73:1907-16.

43. Samuels J, Ozen S. Familial Mediterranean Fever and the other autoinflammatory syndromes: evaluation of the patient with recurrent fever. CurrOpinRheumatol. 2006; 18(1):108-17.

44. Hull KM, Shohman N, Chae JJ, Aksentijevich I, Kastner DL. The expanding spectrum of systemic autoinflammatory disorders and their rheumatic manifestations. CurrOpinRheumatol. 2003; 15:61-9.

45. Sandri S, Hatanaka E, Franco AG, Pedrosa AM, Monteiro HP, Campa A. Serum amyloid A induces CCL20 secretion in mononuclear cells through MAPK (p38 and ERK1/2) signaling pathways. ImmunolLett. 2008; 121:22-6.

46. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996; 15; 87(6):2095-147.

47. Cailliez M, Garaix F, Rousset-Rouviere C, Bruno D, Kone-Paut I, Sarles J, et al. Anakinra is safe and effective in controlling hyperimmunoglobulinaemia D syndrome-associated febrile crisis. J Inherit Metab Dis. 2006; 29:763.

48. Hoffman HM, Throne ML, Amar NJ, Cartwright RC, Sebai M, Kivitz AJ, Kavanaugh A, et al. Long-term efficacy and safety profile of rilonacept in the treatment of cryopryin-associated periodic syndromes: results of a 72- week open-label extension study. ClinTher 2012; 34(10):2091-103.

49. Koné-Paut I, Lachmann HJ, KuemmerleDeschner JB, Hachulla E, Leslie KS, Mouy R, et al. Sustained remission of symptoms and improved health-related quality of life in patients with cryopyrin-associated periodic syndrome treated with canakinumab: results of a double-blind placebo-controlled randomized withdrawal study. Arthritis Res Ther. 2011; 13(6):R202.

50. Aksentijevich I, Masters SL, Ferguson PJ, Dancey P, Frenkel J, Van Royen-Kerkhoff A, et al. An autoinflammatory disease with deficiency of the interleukin- 1-receptor antagonist. N Engl J Med. 2009; 360(23):2426-37.

51. Gabay C, Smith MF, Eidlen D, Arend WP. Interleukin 1 receptor antagonist (IL 1Ra) is an acute-phase protein. J ClinInvest. 1997; 99:2930-40.

52. Dinarello CA. Immunological and inflammatory functions of the Interleukin-1 Familiy. Annu Rev Immunol. 2009; 27:519-50.

53. McMahan CJ, Slack JL, Mosley B, Cosman D, Lupton SD, Brunton LL, et al. A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types. EMBO J. 1991; (10):2821-32.

54. Symons JA, Young PR, Duff GW. Soluble type II interleukin 1 (IL-1) receptor binds and blocks processing of IL-1 beta precursor and loses affinity for IL-1 receptor antagonist. Proc. Natl. Acad. Sci. USA. 1995; 92(5):1714- 8.

55. Eicke L. The inflammasomes: mechanisms of activation and function. Current Opinion in Immunology. 2010; 22:28-33. 56. Matsui K, Tsutsui H, Nakanishi K. Pathophysiological roles for IL-18 in inflammatory arthritis. Expert Opin. Ther. Targets. 2005; 7(6):701-24.

57. Köhidai L, Csaba G. Chemotaxis and chemotactic selection induced with cytokines (IL-8, RANTES and TNF-alpha) in the unicellular Tetrahymena pyriformis. Cytokine. 1998; 10(7):481-6.

58. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protei ST2 and induces T helper type 2-associated cytokines. Immunity. 2005; 23:479-90.

59. Chackerian AA, Oldham ER, Murphy EE, Schmitz J, Pflanz S, Kastelein RA. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J. Immunol. 2007; 179(4):2551-5.

60. The International FMF Consortium. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell. 1997; 90:797-807.

61. Soriano A, Manna R. Familial Mediterranean fever: New phenotypes. Autoimmun Rev. 2012; 12(1):31-7.

62. Lidar M, Yonath H, Shechter N, Sikron F, Sadetzki S, Langevitz P, et al. Incomplete response tocolchicine in M694V homozygote FMF patients. Autoimmun Rev. 2012; 12(1):72-6.

63. Hoffmann G, Gibson KM, Brandt IK, Bader PI Wappner RS, Sweetman L. Mevalonicaciduria-an inborn error of cholesterol and nonstero isoprene biosynthesis. N Engl J Med. 1986; 314:1610-4.

64. Normand S, Massonnet B, Delwail A, Favot CuissetL, Grateau G, et al. Specific increase in caspase-1 activity and secretion of IL-1 family cytokines: a putative link between mevalonate kinase deficiency and inflammation. Eur Cytokine Netw. 2009; 20(3):101-7.

65. Aksentijevich I, Galon J, Soares M, Mansfield E, Hull K, Oh HH, et al. The tumor-necrosisfactor receptor associated periodic syndrome: new mutations in TNFRSF1A, ancestral origins, genotype-phenotype studies, and evidence for further genetic heterogeneity of periodic fevers. Am J Hum Genet. 2001; 69:301-14.

66. Cantarini L, Lucherini OM, Muscari I, Frediani B, Galeazzi M, Brizi MG. Tumour necrosis factor receptor-associated periodic sindrome (TRAPS): State of the art and future perspectives. Autoimmun Rev. 2012; 12(1):38-43.

67. Duncan JA, Bergstralh DT, Wang Y, Willingham SB, Ye Z, Zimmermann AG, et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. ProcNatlAcadSci USA. 2007; 104:8041-6.

68. Ozkurede VU, Franchi L. Immunology in clinic review series; focus on autoinflammatory diseases: role of inflammasomes in autoinflammatory syndromes. ClinExpImmunol. 2012; 167(3):382-90.

69. Demidowich AP, Freeman AF, Kuhns DB, Aksentijevich I, Gallin JI, Turner ML, et al. Brief report: genotype, phenotype, and clinical course in five patients with PAPA syndrome (pyogenic sterile arthritis, pyoderma gangrenosum, and acne). Arthritis Rheum. 2012; 64(6):2022-7.

70. Sfriso P, Caso F, Tognon S, Galozzi P, Gava A, Punzi L, et al. Blausyndrome, clinical and genetic aspects. Autoimmun Rev. 2012; 12(1):44-51.

71. Gattorno M, Sormani MP, D’Osualdo A, Pelagatti MA, et al. A diagnostic score for molecular analysis of hereditary autoinflammatory
syndromes with periodic fever in children. Arthritis Rheum. 2008; 58(6):1823-32.