Tratamiento de la infección del torrente sanguíneo por pseudomona aeruginosa con resistencia a carbapenemicos.
PDF

Palabras clave

Pseudomona aeruginosa, Resistencia a medicamentos, infección del torrente sanguíneo

Cómo citar

1.
Fernández Chica D, Fragozo Mendoza L, Villalobos Caballero C. Tratamiento de la infección del torrente sanguíneo por pseudomona aeruginosa con resistencia a carbapenemicos. Biociencias [Internet]. 25jun.2017 [citado 24ene.2020];12(2). Available from: http://ojsinvestigacion.unilibrebaq.edu.co/ojsinvestigacion/index.php/biociencias/article/view/883

Resumen

La Pseudomona aeruginosa es una bacteria gramnegativa  con gran capacidad de adaptación a ambientes hostiles, uno de ellos, el medio hospitalario, donde ha surgido como germen a temer por el papel preponderante que ha tenido en los pacientes  que cursan con infecciones del torrente sanguíneo, dado por el desarrollo de mecanismo de resistencia a diferentes antimicrobianos que hace complejo el manejo terapéutico, incrementando de esta manera la morbimortalidad, la estancia hospitalaria y los  gastos en atención sanitaria de estos paciente. Se realizó una revisión sistemática de la literatura disponible para establecer el estado actual del manejo antimicrobiano de la infección del torrente sanguíneo por Pseudomona aeruginosa.

PDF

Citas

Nathan C, Cars O. Antibiotic Resistance-Problems, Progress, and Prospects. N Engl J Med [serial on the Internet]. 2014 Nov [cited 2016 Jun 13];371(19):1761–3. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMp1408040

Lucía M, Martínez O, Enrique M, Duran M, Vigilancia D. Vigilancia y analisis del riesgo en salud pública protocolo de vigilancia en salud pública infecciones asociadas a dispositivos Protocolo de Vigilancia en Salud Pública infecciones asociadas a dispositivos. 2016 [actualizado 13 Sept 2015; citado 13 Jun de 2016]. [aprox. 30 pantallas].Disponible en: http://www.ins.gov.co/lineas-de-accion/Subdireccion-Vigilancia/sivigila/Protocolos SIVIGILA/PRO Infecciones asociadas a dispositivos.pdf

Diaz Högberg L, Weist K, Suetens C, Griskeviciene J, Monnet D, Heuer O. Antimicrobial resistance surveillance in Europe Annual epidemiological report 2014. 2014 [cited 2016 Jun 13]; Available from: http://ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-annual-epidemiological-report.pdf

Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother [Serial on the Internet]. 2001 Mar [cited 2016 Jun 10];47(3):247–50. Available from: http://www.jac.oupjournals.org/cgi/doi/10.1093/jac/47.3.247

Bryan LE, Haraphongse R, Elzen HM, Van Den. Gentamicin resistance in clinical-isolates of Pseudomonas aeruginosa associated with diminished gentamicin accumulation and no detectable enzymatic modification. J Antibiot (Tokyo) [Serial on the Internet]. 1976 [cited 2016 Jun10];29(7):743–53. . Available from: http://joi.jlc.jst.go.jp/JST.Journalarchive/antibiotics1968/29.743?from=CrossRef

Pai H, Kim J-W, Kim J, Lee JH, Choe KW, Gotoh N. Carbapenem Resistance Mechanisms in Pseudomonas aeruginosa Clinical Isolates. Antimicrob Agents Chemother [serial on the Internet]. 2001 Feb [cited 2016 Jun 12];45(2):480–4. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.45.2.480-484.2001

Livermore DM. Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother [serial on the Internet]. 1992 Sep [cited 2016 Jun 12];36(9):2046–8. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.36.9.2046

Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol [serial on the Internet]. 2001 Apr [cited 2016 Jun 8];3(2):255–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11321581

Livermore DM. Multiple Mechanisms of Antimicrobial Resistance in Pseudomonas aeruginosa: Our Worst Nightmare? Clin Infect Dis [serial on the Internet]. 2002 Mar [cited 2016Jun 8];34(5):634–40. Available from: http://cid.oxfordjournals.org/lookup/doi/10.1086/338782

Li X-Z, Zhang L, Poole K. Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. J Antimicrob Chemother [serial on the Internet]. 2000 Apr[cited 2016 Jun 9];45(4):433–6. Available from: http://www.jac.oxfordjournals.org/cgi/doi/10.1093/jac/45.4.433

Poole K, Krebes K, McNally C, Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol [Serial on the Internet]. 1993 Nov [cited 2016 Jun 8];175(22):7363–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8226684

Yordanov D, Strateva T. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol [Serial on the Internet]. Microbiology Society; 2009 Sep [cited 2016 Jun 8];58(9):1133–48. Available from: http://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.009142-0

Kohler T, Michea-Hamzehpour M, Henze U, Gotoh N, Kocjancic Curty L, Pechere J-C. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol [serial on the Internet]. Blackwell Science Ltd; 1997 Jan [cited 2016 Jun 10];23(2):345–54. Available from: http://doi.wiley.com/10.1046/j.1365-2958.1997.2281594.x

Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci [serial on the Internet]. The Royal Society; 1980 May [cited 2016 Jun 13];289(1036):321–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6109327

Naas T, Philippon L, Poirel L, Ronco E, Nordmann P. An SHV-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother [serie on the Internet]. 1999 May [cited 2016 Jun 14];43(5):1281–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10223953

Neonakis IK, Scoulica E V., Dimitriou SK, Gikas AI, Tselentis YJ. Molecular Epidemiology of Extended-Spectrum β -Lactamases Produced by Clinical Isolates in a University Hospital in Greece: Detection of SHV-5 in Pseudomonas aeruginosa and Prevalence of SHV-12. Microb Drug Resist [srial on the Internet]. 2003 Jun [cited 2016 Jun 14];9(2):161–5. Available from: http://www.liebertonline.com/doi/abs/10.1089/107662903765826750

Nicolau CJ, Oliver A. Carbapenemasas en especies del género Pseudomonas. Enferm Infecc Microbiol Clin [serie en Internet]. [Citado 19 Junio 2016];28:19–28. Disponible en: https://www.seimc.org/contenidos/ccs/revisionestematicas/bacteriologia/ccs-2008-bacteriologia2.pdf

Nordmann patrice, Guilbert Mi. Extended-spectrum B-lactamases in Pseudomonas aeruginosa. J Antimicrob Chemother. 1998;42:125–8.

Poirel L, Weldhagen GF, Champs C De, Nordmann P. A nosocomial outbreak of Pseudomonas aeruginosa isolates expressing the extended-spectrum beta-lactamase GES-2 in South Africa. J Antimicrob Chemother [serial on the Internet]. 2002 Mar [cited 2016 Jun 14];49(3):561–5. Available from: http://www.jac.oupjournals.org/cgi/doi/10.1093/jac/49.3.561

Parkins MD, Pitout JDD, Church DL, Conly JM, Laupland KB, Jones R, et al. Treatment of infections caused by metallo-β-lactamase-producing Pseudomonas aeruginosa in the Calgary Health Region. Clin Microbiol Infect [serial on the Internet]. Elsevier; 2007 Feb [cited 2016 Jun 14];13(2):199–202. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1198743X14615871

Koh TH, Wang GCY, Sng L-H. Clonal Spread of IMP-1-Producing Pseudomonas aeruginosa in Two Hospitals in Singapore. J Clin Microbiol [serial on the Internet]. 2004 Nov [cited 2016 Jun 14];42(11):5378–80. Available from: http://jcm.asm.org/cgi/doi/10.1128/JCM.42.11.5378-5380.2004

Xiong J, Hynes MF, Ye H, Chen H, Yang Y, M’Zali F, et al. blaIMP-9 and Its Association with Large Plasmids Carried by Pseudomonas aeruginosa Isolates from the People’s Republic of China. Antimicrob Agents Chemother [serial on the Internet]. 2006 Jan [cited 2016 Jun 14];50(1):355–8. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.50.1.355-358.2006

Pagani L, Colinon C, Migliavacca R, Labonia M, Docquier J-D, Nucleo E, et al. Nosocomial Outbreak Caused by Multidrug-Resistant Pseudomonas aeruginosa Producing IMP-13 Metallo- -Lactamase. J Clin Microbiol [serial on the Internet]. 2005 Aug [cited 2016 Jun 14];43(8):3824–8. Available from: http://jcm.asm.org/cgi/doi/10.1128/JCM.43.8.3824-3828.2005

Mendes RE, Toleman MA, Ribeiro J, Sader HS, Jones RN, Walsh TR. Integron Carrying a Novel Metallo- -Lactamase Gene, blaIMP-16, and a Fused Form of Aminoglycoside-Resistant Gene aac(6’)-30/aac(6')-Ib': Report from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother [serial on the Internet]. 2004 Dec [cited 2016 Jun 14];48(12):4693–702. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.48.12.4693-4702.2004

Hanson ND, Hossain A, Buck L, Moland ES, Thomson KS. First Occurrence of a Pseudomonas aeruginosa Isolate in the United States Producing an IMP Metallo- -Lactamase, IMP-18. Antimicrob Agents Chemother [serial on the Internet]. 2006 Jun [cited 2016 Jun 14];50(6):2272–3. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.01440-05

Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo J-D, et al. Characterization of VIM-2, a Carbapenem-Hydrolyzing Metallo-beta -Lactamase and Its Plasmid- and Integron-Borne Gene from a Pseudomonas aeruginosa Clinical Isolate in France. Antimicrob Agents Chemother [serial on the Internet]. 2000 Apr [cited 2016 Jun 14];44(4):891–7. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.44.4.891-897.2000

Yan J-J, Hsueh P-R, Ko W-C, Luh K-T, Tsai S-H, Wu H-M, et al. Metallo- -Lactamases in Clinical Pseudomonas Isolates in Taiwan and Identification of VIM-3, a Novel Variant of the VIM-2 Enzyme. Antimicrob Agents Chemother [serial on the Internet]. 2001 Aug [cited 2016 Jun 14];45(8):2224–8. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.45.8.2224-2228.2001

Pournaras S, Tsakris A, Maniati M, Tzouvelekis LS, Maniatis AN. Novel Variant (blaVIM-4) of the Metallo- -Lactamase Gene blaVIM-1 in a Clinical Strain of Pseudomonas aeruginosa. Antimicrob Agents Chemother [serial on the Internet]. 2002 Dec [cited 2016 Jun 14];46(12):4026–8. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.46.12.4026-4028.2002

Libisch B, Gacs M, Csiszar K, Muzslay M, Rokusz L, Fuzi M. Isolation of an Integron-Borne blaVIM-4 Type Metallo- -Lactamase Gene from a Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolate in Hungary. Antimicrob Agents Chemother [serial on the Internet]. 2004 sept [cited 2016 Jun 14];48(9):3576–8. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.48.9.3576-3578.2004

Patzer J, Toleman MA, Deshpande LM, Kamińska W, Dzierzanowska D, Bennett PM, et al. Pseudomonas aeruginosa strains harbouring an unusual blaVIM-4 gene cassette isolated from hospitalized children in Poland (1998-2001). J Antimicrob Chemother [serial on the Internet]. 2004 Mar [cited 2016 Jun 14];53(3):451–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14749341

Giske CG, Rylander M, Kronvall G. VIM-4 in a Carbapenem-Resistant Strain of Pseudomonas aeruginosa Isolated in Sweden. Antimicrob Agents Chemother [serial on the Internet]. 2003 Sept [cited 2016 Jun 14];47(9):3034–5. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.47.9.3034-3035.2003

Bahar G, Mazzariol A, Koncan R, Mert A, Fontana R, Rossolini GM, et al. Detection of VIM-5 metallo-beta-lactamase in a Pseudomonas aeruginosa clinical isolate from Turkey. J Antimicrob Chemother [serial on the Internet]. 2004 Jul [cited 2016 Jun 14];54(1):282–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15190017

Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular Characterization of a -Lactamase Gene, blaGIM-1, Encoding a New Subclass of Metallo- -Lactamase. Antimicrob Agents Chemother [serial on the Internet]. 2004 Dec [cited 2016 Jun 14];48(12):4654–61. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.48.12.4654-4661.2004

Crespo MP, Woodford N, Sinclair A, Kaufmann ME, Turton J, Glover J, et al. Outbreak of Carbapenem-Resistant Pseudomonas aeruginosa Producing VIM-8, a Novel Metallo- -Lactamase, in a Tertiary Care Center in Cali, Colombia. J Clin Microbiol [serial on the Internet]. 2004 Nov [cited 2016 Jun];42(11):5094–101. Available from: http://jcm.asm.org/cgi/doi/10.1128/JCM.42.11.5094-5101.2004

Pasteran F, Faccone D, Petroni A, Rapoport M, Galas M, Vazquez M, et al. Novel Variant (blaVIM-11) of the Metallo- -Lactamase blaVIM Family in a GES-1 Extended-Spectrum- -Lactamase-Producing Pseudomonas aeruginosa Clinical Isolate in Argentina. Antimicrob Agents Chemother [serial on the Internet]. 2005 Jan [cited 2016 Jun 14];49(1):474–5. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.49.1.474-475.2005

Juan C, Beceiro A, Gutierrez O, Alberti S, Garau M, Perez JL, et al. Characterization of the New Metallo- -Lactamase VIM-13 and Its Integron-Borne Gene from a Pseudomonas aeruginosa Clinical Isolate in Spain. Antimicrob Agents Chemother [serial on the Internet]. 2008 Dec [cited 2016 Jun 14];52(10):3589–96. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.00465-08

Schneider I, Keuleyan E, Rasshofer R, Markovska R, Queenan AM, Bauernfeind A. VIM-15 and VIM-16, Two New VIM-2-Like Metallo-Lactamases in Pseudomonas aeruginosa Isolates from Bulgaria and Germany. Antimicrob Agents Chemother [serial on the Internet]. 2008 Aug [cited 2016 Jun 14];52(8):2977–9. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.00175-08

Toleman MA, Simm AM, Murphy TA, Gales AC, Biedenbach DJ, Jones RN, et al. Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother [serial on the Internet]. 2002 Nov [cited 2016 Nov 14];50(5):673–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12407123

Poirel L, Magalhaes M, Lopes M, Nordmann P. Molecular Analysis of Metallo- -Lactamase Gene blaSPM-1-Surrounding Sequences from Disseminated Pseudomonas aeruginosa Isolates in Recife, Brazil. Antimicrob Agents Chemother [serial on the Internet]. 2004 Apr [cited 2016 Jun 14];48(4):1406–9. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.48.4.1406-1409.2004

Couture F, Lachapelle J, Levesque RC. Phylogeny of LCR-1 and OXA-5 with class A and class D ?-lactamases. Mol Microbiol [serial on the Internet]. 1992 Jun [cited 2016 Jun 14];6(12):1693–705. Available from: http://doi.wiley.com/10.1111/j.1365-2958.1992.tb00894.x

Scoulica E, Aransay A, Tselentis Y. Molecular characterization of the OXA-7 beta-lactamase gene. Antimicrob Agents Chemother [serial on the Internet]. 1995 Jun [cited 2016 Jun 14];39(6):1379–82. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.39.6.1379

Aubert D, Poirel L, Chevalier J, Leotard S, Pages J-M, Nordmann P. Oxacillinase-Mediated Resistance to Cefepime and Susceptibility to Ceftazidime in Pseudomonas aeruginosa. Antimicrob Agents Chemother [serial on the Internet]. 2001 Jun [cited 2016 Jun 14];45(6):1615–20. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.45.6.1615-1620.2001

Dale JW, Godwin D, Mossakowska D, Stephenson P, Wall S. Sequence of the OXA2 β-lactamase: comparison with other penicillin-reactive enzymes. FEBS Lett [serial on the Internet]. 1985 Oct [cited 2016 Jun 14];191(1):39–44. Available from: http://doi.wiley.com/10.1016/0014-5793%2885%2980989-3

Toleman MA, Rolston K, Jones RN, Walsh TR. Molecular and Biochemical Characterization of OXA-45, an Extended-Spectrum Class 2d’ -Lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother [serial on the Internet]. 2003 Sept [cited 2016 Jun 14];47(9):2859–63. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.47.9.2859-2863.2003

D’Agata E. Pseudomonas aeruginosa y otras especies de Pseudomonas. En Bennett J, Dolin R, Blaser M. Mandell, Douglas y Bennett. Enfermedades infecciosas. Principios y práctica. Elsevier; 2015. P. 2656-2670.e3

Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis [serial on the Internet]. 2005 May [cited 2016 Jun 14];40(9):1333–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15825037

Martis N, Leroy S, Blanc V. Colistin in multi-drug resistant Pseudomonas aeruginosa blood-stream infections: a narrative review for the clinician. J Infect [serial on the Internet]. 2014 Jul [cited 2016 Jun 14];69(1):1–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24631777

Balaji V, Jeremiah SS, Baliga PR. Polymyxins: Antimicrobial susceptibility concerns and therapeutic options. Indian J Med Microbiol [serial on the Internet]. [cited 2016 Jun 14];29(3):230–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21860102

Karvanen M, Plachouras D, Friberg LE, Paramythiotou E, Papadomichelakis E, Karaiskos I, et al. Colistin methanesulfonate and colistin pharmacokinetics in critically ill patients receiving continuous venovenous hemodiafiltration. Antimicrob Agents Chemother [serial on the Internet]. 2013 Jan [cited 2016 Jun 14];57(1):668–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23147733

Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother [serial on the Internet]. 2011 Jul [cited 2016 Jun 14];55(7):3284–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21555763

Plachouras D, Karvanen M, Friberg LE, Papadomichelakis E, Antoniadou A, Tsangaris I, et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob Agents Chemother [serial on the Internet]. 2009 Aug [cited 2016Jun14];53(8):3430–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19433570

Mohamed AF, Karaiskos I, Plachouras D, Karvanen M, Pontikis K, Jansson B, et al. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob Agents Chemother [serial on the Internet]. 2012 Aug [cited 2016 Jun 14];56(8):4241–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22615285

Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev [serial on the Internet]. 2012 Oct [cited 2016 Jun14];25(4):682–707. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23034326

Lee GC, Burgess DS. Treatment of Klebsiella pneumoniae carbapenemase (KPC) infections: a review of published case series and case reports. Ann Clin Microbiol Antimicrob [serial on the Internet]. 2012 Jun [cited 2016 Jun 14];11:32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23234297

Rigatto MH, Vieira FJ, Antochevis LC, Behle TF, Lopes NT, Zavascki AP. Polymyxin B in Combination with Antimicrobials Lacking In Vitro Activity versus Polymyxin B in Monotherapy in Critically Ill Patients with Acinetobacter baumannii or Pseudomonas aeruginosa Infections. Antimicrob Agents Chemother [serial on the Internet]. 2015 Oct [cited 2016 Jun14];59(10):6575–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26259799

Ly NS, Bulman ZP, Bulitta JB, Baron C, Rao GG, Holden PN, et al. Optimization of Polymyxin B in Combination with Doripenem To Combat Mutator Pseudomonas aeruginosa. Antimicrob Agents Chemother [serial on the Internet]. 2016 May [cited 2016 Jun 14];60(5):2870–80. Available from: http://aac.asm.org/lookup/doi/10.1128/AAC.02377-15

Bergen PJ, Tsuji BT, Bulitta JB, Forrest A, Jacob J, Sidjabat HE, et al. Synergistic killing of multidrug-resistant Pseudomonas aeruginosa at multiple inocula by colistin combined with doripenem in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother [serial on the Internet]. 2011 Dec [cited 2016 Jun14];55(12):5685–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21911563

He W, Kaniga K, Lynch AS, Flamm RK, Davies TA. In vitro Etest synergy of doripenem with amikacin, colistin, and levofloxacin against Pseudomonas aeruginosa with defined carbapenem resistance mechanisms as determined by the Etest method. Diagn Microbiol Infect Dis [serial on the Internet]. 2012 Dec [cited 2016 Jun 14];74(4):417–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22995366

Bozkurt-Guzel C, Gerceker AA. In vitro pharmacodynamic properties of colistin methanesulfonate and amikacin against Pseudomonas aeruginosa. Indian J Med Microbiol [serial on the Internet]. [cited 2016 Jun 14];30(1):34–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22361758

Morata L, Cobos-Trigueros N, Martínez JA, Soriano A, Almela M, Marco F, et al. Influence of multidrug resistance and appropriate empirical therapy on the 30-day mortality rate of Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother [serial on the Internet]. 2012 Sept [cited 2016 Jun 14];56(9):4833–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22751533

Derechos de autor 2017 Revista Biociencias