Estudio de la inactivación filogenética de los genes Nanog postembrionario en comparación con el Ambystoma mexicanum
PDF

Palabras clave

Evolución
Filogenia
Gen Nanog
Postembrionaria
Regeneración.

Cómo citar

1.
Ortega García YRT, Parga Lozano CH. Estudio de la inactivación filogenética de los genes Nanog postembrionario en comparación con el Ambystoma mexicanum. Biociencias [Internet]. 19feb.2015 [citado 24ene.2020];10(1):17 -25. Available from: http://ojsinvestigacion.unilibrebaq.edu.co/ojsinvestigacion/index.php/biociencias/article/view/97

Resumen

Introducción: El proceso de regeneración puede ocurrir en múltiples niveles de la organización biológica y la habilidad de los diferentes organismos para regenerar partes faltantes es altamente variable. El gen Nanog es un factor de transcripción en células madre embrionarias; se cree que es clave en el mantenimiento de la pluripotencia. Objetivo: Determinar la filogenia de la inactivación de los genes Nanog postembrionario en comparación con el Ambystoma mexicanum. Materiales y métodos: Se utilizó un diseño cualitativo, basado en la revisión y recolección de las secuencias genómicas con datos del Genbank, donde se compararon las secuencias de nucleótidos por BLAST, se trabajó con el software de alineamiento genético MEGA, para alinear las secuencias y se construyeron dendogramas de Neighbor Joining. Resultados: Se observó que las especies con mayor similitud con el Ambystoma mexicanum son las aves, al contar con una distancia evolutiva menos amplia que la del Homo sapiens, entre las que encontraron Taeniopygia guttata, Zonotrichia albicollis, una especie en particular es el Ornithorhynchus anatinus. Conclusión: El Ambystoma mexicanum y el Homo sapiens presentan un alto grado de distancia genética por ser pocas las secuencias genómicas del gen Nanog que comparten, en comparación con otras especies que comparten más secuencias genómicas. Se cree que para inducir la regeneración en humanos lo mejor sería poder reproducir los procesos que la naturaleza nos muestra en animales como la salamandra. Este proceso parece bloquear la formación del blastema. En principio, los genes o moléculas que atenúan la inflamación o que bloquean la remodelación de la matriz podrían favorecer una respuesta regenerativa al impedir la cicatrización.

PDF

Citas

1. Polit DF, Hungler BP. Diseño y métodos en la investigación cualitativa. En: Polit DF, Hungler BP (eds). Investigación científica en ciencias de la salud. 6a ed. México: McGraw-HillInteramericana; 2000. pp. 231-47.

2. Anderson J, Reisz R, Scott D, Frobisch N, Sumida S. A stem batrachian from the early Permian of Texas and the origin of frogs and
salamanders. Nature. 2008; 453:515-18.

3. Bachvarova R, Masi T, Drum M, Parker N, Mason K, Patient R, Johnson D. Gene expression in the axolotl germ line: Axdazl, Axvh,
Axoct-4, and Axkit. Dev. Dyn. 2004; 231:871- 80.

4. Bachvarova F, Crother I, Johnson D. Evolution of germ cell development in tetrapods: comparison of urodeles and amniotes. Evol. Dev. 2009; 11:603-9.

5. Bachvarova F, Crother I, Manova K, Chatfield J, Shoemaker C, Crews D, Johnson A. Expression of Dazl and Vasa in turtle embryos and
ovaries: evidence for inductive specification of germ cells. Evol. Dev. 2009; 11:525-34.

6. Brons I, Smithers L, Trotter M, Rugg-Gunn P,
Sun B, Chuva. Pedersen R, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 2007; 448:191-5.

7. Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, et al. Capture of authentic embryoni stem cells from rat blastocysts. Cell. 2008;
135:1287-98.

8. Hamazaki T, Oka M, Yamanaka S, Terada N. Aggregation of embryonic stem cells induces Nanog repression and primitive endoderm differentiation. J. Cell Sci. 2004; 117:5681-6.

9. Johnson A, Bachvarova R, Drum M, Masi T. Expression of axolotl DAZL RNA, a marker of germ plasm: widespread maternal RNA and
onset of expression in germ cells approaching the gonad. Dev. Biol. 2001; 234:402-15.

10. Johnson A, Drum M, Bachvarova R, Masi T, White M, Crother B. Evolution of predetermined germ cells in vertebrate embryos:
implications for macroevolution. Evol. Dev. 2003; 5:414-31.

11. Lyons I, Parsons L, Hartley L, Li R, Andrews J, Robb L, Harvey P. Myogenic and morphogenetic defects in the heart tubes of murine
embryos lacking the homeo box gene Nkx2-5. Genes Dev. 1995; 9:1654-66.

12. Yuri S, Fujimura S, Nimura K, Takeda N, Toyooka Y, Fujimura Y, et al. Sall4 is essential for stabilization, but not for pluripotency, of
embryonic stem cells by repressing aberrant trophectoderm gene expression. Stem Cells. 2009; 27:796-805.

13. Thomson J, Itskovitz-Eldor J, Shapiro S, Waknitz MA, Swiergiel J, Marshall V, Jones J. Embryonic stem cell lines derived from human
blastocysts. Science. 1998; 282:1145-47.

14. Wang J, Rao S, Chu J., Shen X, Levasseur D,
Theunissen T, et al. A protein interaction
network for pluripotency of embryonic stem
cells. Nature. 2006; 444:364-8.

15. Wang J, Levasseur D, Orkin S. Requirement of Nanog dimerization for stem cell self-renewal and pluripotency. Proc. Natl. Acad. Sci.
USA. 2008; 105:6326-31.

16. Yu J, Vodyanik M, Smuga-Otto K, Antosiewicz-Bourget
J, Frane J, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 318:1917- 20.

17. Carlson BM. Some principles of regeneration in mammalian systems. The Anatomical Record Part B: The New Anatomist. 2005; 287B:4-13.

18. Harty M, Neff AW, King MW, Mescher A. Regeneration or scarring: An immunologic perspective. Developmental Dynamics.
2003; 226:268-79.

19. Kragl M, Knapp D, Nacu E, Shahryar K, Malcolm M, Hans D. Cells keep a memory of their tissue origin during axolotl limb regeneration.
Nature. 2009; 460:60-5.

20. Kawakami Y, Rodriguez Esteban C, Raya M. Wnt/β-catenin signaling regulates vertebrate limb regeneration. Genes & Development. 2006; 20:3232-7.

21. Yokoyama H, Ogino H, Stoick-Cooper CL, Grainger RM, Moon RT. Wnt/[beta]-catenin signaling has an essential role in the initiation of
limb regeneration. Developmental Biology. 2007; 306:170-8.

22. Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP. Molecular Basis for the Nerve Dependence of Limb Regeneration in an
Adult Vertebrate. Science. 2007; 318:772-7.

23. Satoh A, Gardiner DM, Bryant SV, Endo T. Nerve-induced ectopic limb blastemas in the axolotl are equivalent to amputationinduced
blastemas. Developmental Biology. 2007; 312:231-44.

24. Kawakami A. Stem cell system in tissue regeneration
in fish. Development, Growth & Differentiation. 2010; 52:77-87.

25. Tiniakos DG, Kandilis A, Geller SA. Tityus: A forgotten myth of liver regeneration. Journal of Hepatology. 2010; 53:357-61.

26. Power C, Rasko JEJ. Whither Prometheus’ Liver? Greek Myth and the Science of Regeneration. Annals of Internal Medicine. 2008; 149:421-6.

27. Ingham JM. Human Sacrifice at Tenochtitlan. Comparative Studies in Society and History. 1984; 26:379-400.

28. Lenhoff HMLySG. Abraham Trembley and the origins of research on regeneration in animals. In: Dinsmore CE, ed. A history of regeneration
research: milestones in the evolution of a science. Nueva York: Cambridge University Press; 1991. pp.47-66.

29. Tsonis PA, Fox TP. Regeneration according to Spallanzani. Developmental Dynamics. 2009; 238:2357-63.

30. Géraudie MSyJ. The neurotrophic phenomenom: its history during limb regeneration in the newt. In: Dinsmore CE, ed. A history of regeneration research: milestones in the evolution of a science. Nueva York: Cambridge University Press; 1991. pp.101-12.

31. Alvarado AS. Regeneration in the metazoans: why does it happen? BioEssays. 2000; 22:578-90.

32. Agata K, Saito Y, Nakajima E. Unifying principles of regeneration I: Epimorphosis versus morphallaxis. Development Growth & Differentiation. 2007; 49:73-78.

33. Galliot B, Ghila L. Cell plasticity in homeostasis and regeneration. Molecular Reproduction and Development. 2010; 77:837-55.

34. Poss KD. Advances in understanding tis sue regenerative capacity and mechanisms in animals. Nat Rev Genet. 2010; 11:710-22.

35. Santos-Ruiz L, Santamaria JA, Ruiz-Sanchez J, Becerra J. Cell proliferation during blastema
formation in the regenerating teleost fin. Developmental Dynamics. 2002; 223:262-72.

36. Nye HLD, Cameron JA, Chernoff EAG, David L. Regeneration of the urodele limb: A review. Developmental Dynamics. 2003; 226:280-94.

37. Nimeth K, Egger B, Rieger R, et al. Regeneration in < i> Macrostomum lignano</i> (Platyhelminthes): cellular dynamics
in the neoblast stem cell system. Cell and Tissue
Research. 2007; 327:637-46.

38. Galliot B, Chera S. The Hydra model: disclosing an apoptosis-driven generator of Wntbased regeneration. Trends in Cell Biology. 2010; 20:514-23.

39. Call MK, Tsonis PA. Vertebrate Limb Regeneration. In: Yannas IV, ed. Regenerative Medicine I: Springer Berlin/Heidelberg; 2005. pp.67-81.

40. Congdon KL, Voermans C, Ferguson EC, DiMascio LN, Uqoezwa M, Zhao C. Activation of Wnt Signaling in Hematopoietic Regeneration. Stem Cells. 2008; 26:1202-10.

41. Yen T-H, Wright N. The gastrointestinal tract stem cell niche. Stem Cell Reviews and Reports. 2006; 2:203-12.

42. Neal MD, Richardson WM, Sodhi CP, et al. Intestinal Stem Cells and Their Roles During Mucosal Injury and Repair. Journal of Surgical
Research. 2011; 167:1-8.

43. Cordero JB, Sansom OJ. Wnt signalling and its role in stem cell-driven intestinal regeneration and hyperplasia. Acta Physiologica. 2012
Jan; 204(1):137-143.

44. Lade AG, Monga SPS. Beta-catenin signaling in hepatic development and progenitors: Which way does the WNT blow? Developmental
Dynamics. 2011; 240:486-500.

45. Adell T, Cebrià F, Saló E. Gradients in Planarian
Regeneration and Homeostasis. Cold Spring Harbor Perspectives in Biology. 2010; 2(1):1-13.

46. Lin H, Schagat T. Neuroblasts: a model for the asymmetric division of stem cells. Trends in Genetics. 1997; 13:33-9.

47. Alvarado AS, Tsonis PA. Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet. 2006; 7:873-84.

48. Loh YH, Wu Q, Chew JL, Vega VB, Zhang WW, Chen X. The Oct4 and Nanog transcription network regulates pluripotency in mouse
embryonic stem cells. Nat Genet. 2006; 38: 431-40.

49. Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem. 2005; 280: 24731-7.

50. Chazaud C, Yamanaka Y, Pawson T, Rossant J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell. 2006; 10:615-24
Derechos de autor 2015 BIOCIENCIAS